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ABSTRACT

-The subjectivist, Bayesian paradigm for a decision-maker is described.

It is shown how the notion of utility, and the principle of maximizing

expected utility, both depend on the description of uncertainty through

probability. The justification for the necessity of this description due to

de Finetti is outlined. The twin, practical problems of the evaluation of the

decision-maker's probabilities and utilities are discussed. Probability, as

used in the paradigm, is a subjectivist notion which is distinct from the

chance, or frequentist, concept and there is discussion of this difference.

The calculations for the analysis of a decision tree are described and the

notions of the utility of data developed. The statistical analysis of data

that flows from the paradigm is described and the basic, likelihood principle

derived and discussed. The material is illustrated by a simple example from

insurance.
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SIGNIFICANCE AND EXPLANATION

Consider a decision-maker who is required to choose amongst a number of

decisions in a situation in which there is some uncertainty. How is he to

decide? In the 1920's Ramsey showed that any sensible procedure amounts to

describinq that uncertainty by a probability distribution, to measuring the

quality of possible outcomes by a utility function, and choosing that decision

which maximizes expected utility. Any other procedure can be shown to be

defective.

The paper discusses this recipe of Ramsey's, outlining a justification

due to de Finetti, and then addresses the twin practical problems of assessing

the decision-maker's probabilities and utilities. How can we assess the

probability of nuclear accidents? How can we evaluate the need for nuclear

power stations? The tools we have at the moment are simple but useful, though

few attempts have been made to use them.
%-

When uncertainty is present it is natural and sensible to try to reduce

it by acquiring more information or more data. This is expensive and loses

utility. How can the amount of information be measuredi and how can we

sensibly handle the data obtained? These statistical questions are answered

t.: and the remarkable likelihood principle discussed.

The paper is an invited review for the European Journal of Operational

Research. In my view Ramsey's discovery must count amongst the most important

- ances of this century and a proper appreciation of his argument could

•_e. tly impiove civilized life because we could make decisions more wisely and

also communicate our ideas more easily.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE SUBJECTIVIST VIEW OF DECISION-MAKING

Dennis V. Lindley

1. The Bayesian paradigm.

We begin with a formal statement of the subjectivist, or Bayesian,

paradigm for a decision-maker, conveniently called you. A set D of possible

decisions d is available and you are required to select one from the set.

Complete information is not available and you are uncertain which of a number

of possibilities e in a set R obtains. A pair (d,e) is called a

consequence and effectively describes the outcome for you were you to select

d and 0 were true. Since all the uncertainty is supposed concentrated

* in H , a consequence, for given d and 0, is known to you. It is

necessary to describe two aspects of the situation: the uncertainty

surrounding e; and the fact that some consequences are more attractive to

you than others. These are expressed numerically as follows. The uncertainty

about 0 were you to select d is described by a probability distribution

Pd over H . The comparison of consequences is effected by a real-valued

utility function u(d,e). With these two measures available the optimum

decision is that d that maximizes the expected (with respect to Pd)

utility.

The key ingredient in the paradigm just described is your probabilistic

description of the uncertainty surrounding 0. Once that is admitted the

utility and expectation results are simply derived as follows. For simplicity

in exposition suppose D and H are both finite so that there are a finite

number of consequences c = (d,e). Select from these the best and worst

consequences cI and co, and assign them utilities one and zero
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respectively. If c is any other consequence, you may consider c as an

alternative to a gamble that has probability u of resulting in the best

c, and probability I - u of co. For u near one, the gamble is pro-

ferredi for u near zero, the sure outcome c is preferred. It is hard to

escape the conclusion that there is a unique value of u such that you are

indifferent between c and the gamble. This number is called the utility

of c , written u(c) or u(d,O). To show that only the expected utility is

relevant consider any decision d . It will result for you in a consequence

(d,e) with probability Pd' conveniently described by a density p(81d),

the probability of 8 were d to be selected (or simply, given d). But

(d,O) is equivalent to a probability u(d,8) of the best consequence c1

(and probability 1-u(d,O) of the worst). So, by the rules of probability,

the choice of d equivalently results in c1  with probability

: u(d,8)p(Ojd), and otherwise c0 . Clearly the best decision is that with
e

the highest probability of the best consequencei but this probability is the

expected utility and the MEU principle follows. Notice that utility is

defined probabilistically and it is this probabilistic aspect that justifies,

by the rules of the probability calculus, the combined probability

u(d,O)p(8)d).
e
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2. Example.

An insurance company has to decide the premium d to offer a small

airline that wishes to insure two planes, of a new design, for one year. The

company's assets are 8 (in suitable units) and the insured value of a plane

is 2. (Only total loss is being considered.) The probability of a loss of

one aircraft (8-1) is assessed at 0.0388, and of both (9-2) at 0.0006,

leaving 0.9606 for that of no loss (8-0). The company's utility for assets

x is l-eX/5 o (These values will be discussed further below.)

If the insurance is not undertaken the assets will remain at 8 with

utility of l-e"8 / - 0.798. If a premium d is offered and accepted, the

assets will be either S+d (if no loss), 6+d (one loss) or 4+d (two losses)

and the expected utility is

1 - e- (8 +d)/5 x .9606 - e-(6+d)/5 x .0388 - e-(4 +d)/5 x .0006.

This is equal to the original utility of 0.798 where d is about 0.10.

Hence any premium above this value is sensible. Notice that the expected loss

is

2 x .0388 + 4 x .0006 - 0.08,

so that the smallest reasonable premium is 25% above the expected monetary

loss. This increase is ascribable to the form of the utility function. In

practice, administrative expenses will have to be added to the figure of

0.10 to arrive at a realistic figure.

-3-
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3. The inevitability of probability.

We return to consider the main feature of the subjectivist paradigm,

namely the description of your uncertainty about e through a probability

distribution; your probability for 8. It is important to recognize that it

is not assumed that probability is an appropriate description of uncertanity

but rather it is proved, starting from other assumptions about uncertainty,

that you, to decide sensibly, must have a distribution. The earliest such

proof was given by Ramsey. Later proofs were provided by de Finetti and by

Savage. We now outline part of de Pinetti's demonstration which is both the

simplest and the most useful practically.

Suppose you are considering the event A that 8 belongs to some set

in H : in the example, consider the event that there are no accidents,

8=0. Suppose you agree to describe the uncertainty of A by a real number

x , say. Then one possibility is to see how good you are by giving you a

penalty score (x-1)2 if A subsequently turns out to be true and x2

otherwise. The scores are the squares of the discrepancy between x and 1,

for a true event, and 0 for a false one. The idea here is simply to provide

a measure of your ability in a realizable fashion: to keep a check on your

skill as a worker in OR. Then clearly x should lie between 0 and 1 for

a value of x in excess of 1 would give larger scores than x=1 whatever

happened to A: similarly x=0 is always better than x < 0. Now suppose

you assign x to A and y to A, the negation of A. The total score

if A is true is (x-1)2 + y2, and if A is false (A true) x2 + (y-l)2 .

These scores are the squares of the distances of (x,y) from (1,0) and (0,1)

respectively and can both be reduced by dropping a perpendicular from (x,y)

to the line through (1,0) and (0,I) and replacing (x,y) by the coor-

dinates of the foot of the perpendicular. Hence the only reasonable values

-4-



of x and y lie on the line which has equation x+y = 1. But this is the

addition rule of probability that says that the negation of A has 1 minus

the probability of A I y - 1-x. The product rule p(AB) - p(A)p(BIA) can

be derived by a similar, but more involved, geometric argument. Consequently

we have proved that a numeric description of uncertainty, when tested by the

quadratic scoring rule, must be a probability. (It turns out that the partic-

ular rule used is almost irrelevant.)

In the outline of de Finetti's proof we saw that if values x and y

for A and A were used that did not add to 1, then the score would always

be increased. The result generalizes. If you use a decision procedure which

is not equivalent to assignments of probability and utility, followed by MEU,

then the decision could always be improved, whatever be e , by some proce-

dure which did proceed according to the subjectivist paradigm. The EEC has

recently enacted weights and measures legislation which uses a t-test: a

procedure which does not agree with the paradigm. The community is therefore

suffering a sure loss. The subjectivist paradigm is often called coherent

because it concerns the way decisions and events fit together, or cohere. The

proof above concerned the coherence of x and y for A and for A. The

EEC procedure is incoherent.

A distinction is sometimes made between decision-making when the proba-

bilities are known, and when they are unknown. Such a distinction is void in

the subjectivist view because probability is your description of what you

know: it always exists for you. There may be a practical problem in your

finding it, as will be discussed below, but it is the description of uncer-

tainty. The spurious distinction partly arises through thinking of proba-

bility in frequency terms: another point mentioned below.

i , -5-



As a theory of sensible behaviour for a single decision-maker the

gsubjectivist approach is unassailed. No criticism known to me has much

substance. The criticism that does warrant serious consideration is that that

queries the practicality of the procedure. How, it is argued, can you assess

probabilities and utilities: for if you cannot, coherence is not an available

option for you. The practical implementation is indeed formidable but in

understanding the criticism an analogy may not be out of place. Euclidean

geometry was a valid theory for many centuries but was of limited

applicability because people had difficulty in measuring angles and dis-

tances. It was not until the inventions of triangulation and theodolites that

the geometry became fully implementable. As so it is with Bayesian ideas: at

the moment we lack good theodolites of uncertainty. Unfortunately OR workers

and others, instead of tackling the measurement problems for probability and

utility, resort to other, incoherent procedures like minimax. Nevertheless

some progress has been made and we now consider practical assessment

techniques for utility and probability.

'4
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4. Determination of your probabilities:

A simple way to train a person, you, in probability assessment is to use

the quadratic scoring rule: to take a series of events, have you assess their

probabilities, check on their truth and calculate the total score. It is

common to use almanac questions (has Rome a larger population than Paris?)

whose answer is unknown to you but can easily be found from an almanac. One

context in which this seems to be done is in the training of meteorologists,

at least in North America, where the event might be "rain tomorrow". Such ex-

posure can have an effect on your perception of uncertainty. Confident people

tend at first to give values near 0 or I but learn from the large scores

they incur when they are wrong. Overcautious subjects hovering around 0.5

become bolder when they see so many of the events they have given probability

0.6 to become true. Nevertheless the method is not entirely satisfactory if

only because the events and the scoring rule are not natural. OR workers are

not interested in almanac questions and their rewards are not determined by

the scores. The first defect can be alleviated to some extent by replacing

the almanac questions by more relevant ones: for example, the casualty

assessor in the insurance example above could be scored (.0388-1) 2 if one

aircraft crashed. But it may be felt that other factors besides the score

should be taken into account in evaluating his worth to the insurance company,

and if the assessor feels this, he may be led to be motivated to distort his

probability evaluations. Thus suppose the penalty scores were greater for

true events than false ones by a factor of 2, so that they were 2(x-1) 2

and x2 . ror an event of probability truly p , the expected score is

2p(x-1) 2 + (1-p)x 2 which is least at x = 2p/(1+p) > p. Hence the assessor

ill increase his evaluations above their correct values. (Equally

p - x/(2-x), so the stated values could be downgraded from x to x/(2-x) to

-7-



give probabilities.) Thus we see that it is dangerous to use implicit scoring

rules because they may motivate you to give misleading answers. Whilst on the

subject of keeping a check on an OR worker or statistician this is not

usually done but it would surely be of interest to do so. For example what

about all the hypotheses declared significant at 5% by conventional statis-

tical tests: how many were in fact false?

Another check that is sometimes applied, again with weather forcasters,

is to take all the events that were assigned a probability near, say, 0.8;

perhaps between 0.75 and 0.85; and see how many were subsequently true. One

intuitively feels that 80% should be truej if so, you are said to be well-

calibrated. Many people, perhaps most, are not well-calibrated, usually fewer

than 80% of the events turn out to be true

There is another method of assessing probabilities that seems promising,

though it has been little tried in practice. To appreciate this you need to

7. be clear what is meant by saying that uncertainty is described by proba-

bility. It does not just mean that each event is assessed by a number lying

between 0 and I - which all the methods already mentioned use - but that

uncertainties for different events combine according to the rules of the

J probability calculus. These are the addition and multiplication rules and are

the basis of the fundamental idea of coherence between different judgments.

The method uses this notion of coherence. For example, if A is the event of

interest, you may be asked for p(A) but also for p(AIB) for some appro-

priate event B , for p(AIB) and for p(B). These should combine according

to the rule

p(A) p(AIB)p(B) + p(AIB)[1-p(B)].

-i-8-



If the stated values do not do this then at least one of them will have to be

adjusted. In the aircraft insurance example let A be the event of at least

one loss, assessed at 0.0394, or 0.04 to 2D. You may feel that this depends

on the usage the aircraft gets in the year and that this in turn depends on

B, the event that the airline gets a contract that is on offer. If it does,

the value might go up to 0.06, if not it may be as low as 0.03. You assess the

probability of getting the contract at 0.6. But the right-hand side of the

equation just displayed is

0.06 x 0.6 + 0.03 x 0.4 - 0.048

not 0.04 as originally assessed, but 20% higher. At least one, and usually

more, of the four values must be revised. Such a process of revision is

called reconciliation: one has to reconcile the different values obtained by

looking at different aspects of the problem. The basic idea here is not just

to look at the issue of immediate interest - loss of an aircraft - but to look

at related matters, like usage, to obtain a coherent picture of the situa-

tion. Since MEU is really all about coherence, the incorporation of this idea

into probability evaluations seems right in principle. It is not unlike the

principle of triangulation already referred to in connection with Euclidean

geometry, wherein several measurements aze taken and least-squares used to

reconcile discrepancies observed. The topic is discussed by Lindley et al.

(1919).

There are other issues involved in the assessment of probabilities,

including the fact that other factors than the uncertainty may enter into

-oniideration. For example, an event perceived as unpleasant may have its

probability underestimated - thus subject's asked to assess their proba-

bilities of death from various causes tend to give values that incoherently

add to less than one - or an unfamiliar one exaggerated. A clear statement of

-9-



the scoring rule is one possibility, though impractical in considerations of

death, but reference to coherence is perhaps a better way. To relate the

probability of a nuclear accident to that of an automobile accident is

.* useful: the latter being a familiar risk that we are prepared to tolerate.

But issues like this are confused with utility considerations, so we turn to

discuss these.

-'10
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5. Determination of your utilities.

The point was made above that utility is not just a number describing the

worth of a consequence but a number measured on a probability scale, and that

its rules of combination are essentially probabilistic. Any determination of

utility must therefore have a probability ingredient. Consider first the case

where the consequences (d,8) are purely monetary. (This is reasonable in

the insurance example.) The required evaluation is of u(x), the utility for
-'4

monetary assets, x . Notice that it is necessary to speak of assets, not

gains or losses, because the paradigm is in terms of consequences or out-

*1 icomes. A gain of t100 changes a consequence of L1000 into one of £1100.

An error is often made of speaking in terms of changes in consequences rather

than in terms of the consequences themselves.

There are basically two ways of determining utilityl with fixed proba-

bility and varying outcomes, or with fixed outcomes and varying probability.

Thus you may be asked to consider what sure x is equivalent to equal proba-

bilites of y and z : then u(x) -1/2 (u(y) + u(z)l. Alternatively for

y < x < z, what probability p makes sure x equivalent to an uncertain

situation with probabilities p of z and i-p of y: then u(x) - pu(z) +

(1-p)u(y). By asking a series of questions like this the utilities can be

determined at a series of values x,y,z, ° ' " and either a curve faired in or a

member of a class of curves fitted by a procedure like least-squares. As with

probability it is advisable to ask more questions than are minimally needed to

provide a check on oherence.

A phenomenon that often arises in studying monetary utility is that of

risk aversion. In the example with equal probabilities in the last paragraph,

it often happens that x is less than I/2 (y+z), the expected monetary (as

distinct From utility) evaluation of the uncertain situation, reflecting a

a-11-



dislike of the uncertainty. A person giving such an evaluation is said to be

risk averse (if x > 1/2 (y+z), he is risk prone; x 1/2 (y+z) is risk neu-

tral). The appropriate measure of risk aversion is -u"(x)/u'(x) where the

primes denote differentiation. The function u(x) = 1-e-ax used in the air-

craft insurance example has constant risk aversion of amount a, and we saw

how it led to a premium in excess of the monetary amount. Risk aversion that

decreases with x is perhaps more reasonable since a risky situation can be

* more easily tolerated the greater are the assets.

Notice that the discussion just given does not depend on x being money;

much of it will be appropriate whenever the consequences are in terms of a

single real number. Another example is provided by measures of ability when

the decision is whether or not to accept the person for a training programme.

Suppose next that the consequences are described not by one real number,

x , but by two, x and y , and, for definiteness that the utility is in-

creasing in both x and y. As before x might be assets, the new y might

be inventory. You then have to determine your utility function u(x,y). One

possibility is to determine indifference curves in the (x,y)-plane such that

the utility is constant on a curve. The problem is then to determine the

utility for each curve and the earlier, one-dimensional methods can be used.

Another useful device borrowed from economics is the marginal rate of substi-

tution of one quantity for another. If y is decreased by A by how much,

XA, will x have to be increased to keep the utility constant? As

A 0 0, X is the rate, and -
"  the slope, of the indifference curve at

(x,y).

-12-
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These ideas involve consideration of changes in both x and y. Sup-

pose x is held fixed and variations in y are considered. Then, by suppo-

sition, larger y's are to be preferred. But suppose that more was truej

namely that attitudes to any two uncertain situations p1 (y) and P2(y),

defined by probability distributions over y for fixed x, did not depend

on x , so that if you preferred one to the other for one x you would prefer

it for all x. Then y is said to be utility independent of x. Then it is

not difficult to show that u(x,y) - f(x) + g(x)h(y) for suit-able f, g

and h. A particularly important case is that of mutual utility independence

of x and y, when, in addition the same result holds with x and y

interchanged. Then u(x,y) - F(x)H(y) for suitable F and H. Independence

notions of this type are increasingly important in higher dimensions. Keeney

and Raiffa (1976) provide an excellent account with practical examples.

4
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6. Subjective aspects of probability.

An objection to the subjectivist view of decision-making is its subjec-

tivity. This is correct: it is a view of the world appropriate to a single

decision-maker, or subject, that we have called you. You may be an indi-

vidual, but equally you may be any group that has agreed collectively to act

as a decision-maker, whether a company, acting through a board of directors,

or a nation, acting through its government. It is not, and does not claim to

be, a method of reaching decisions when two or more desicion-makers are in

conflict. As far as I am aware, there is, outside of the two-person, zero-sum

game, no paradigm for conflict decision-makingi and that paradigm is deficient

in many applications because the zero-sum assumption is inappropriate. Thus

in a NATO, Warsaw Pact context the respective utilities are not the same;

* indeed, that is what the disagreement is about. In default of any sensible

theory of conflict decision-making the subjectivist view can make a useful

contribution. For example, in a military conflict it is valuable for one side

to list the scenarios open to the enemy, the B's of the model, and to assess

the probabilities of the enemy taking each of them. Certainly this is better

than much current military thinking that adopts a minimax strategy, guards

against the worst and hence escalates the conflict aspect with a resulting

build up of forces that itself threatens peace. (Incidentally, within the

context of a single decision-maker, the minimax strategy, not being MEU, is

typically incoherent.)

The Bayesian view does not say how the differing opinions are to be

reconciled, say within a company. It is however clear that many differences

can he ascribed to incoherence on the part of one or more of the directors,

and that a sharing of views in the framework of utility and probability can

help to resolve many of them. If compromise is finally necessary the theory

-14-
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does not say how it should be reached. It does say that whatever decision is

adopted it should agree with some probability and some utility specifica-

tions. An explicit statement of what these are can be enormous help in

discussing a position. An insurance company could usefully determine its

current utility function for money and instruct its underwriters accordingly.

In the subjective view probability is an expression of your uncertainty

concerning the world. Probability, as de Finetti says, does not exist -

existing in the sense of being a property of the material world irrespective

of you. Rather it is an expression of a relationship between you and that

world. An example may clarify this. Consider a coventional die with six

faces numbered from I to 6. If the die is rolled a large number of times the

proportion of times it shows 6 (or any other number) will stabilize around a

value w, say. This value is a property of the die. But before the rolling

you may have a probability p that the die, on its first roll, will show 6.

There is no suggestion that p = (. Of course, after all the throws, the new

probability (having been revised coherently by the rules of the probability

calculus) will equal w, but this need not be true initially: simply your

opinion about the die changes as a result of the rolls. w is often called a

chance: it is a frequency concept, whereas p is not. Probability, as used

in this paper has no frequency or repetitive connotation.

4The methods described for the practical determination of utility and

probability are not entirely satisfactory. Really sound methods will involve

training of decision-makers. This training could begin in school. Today our

teaching is essentially based on right and wrong; true and false. It ought to

be based on a realistic appreciation of the world in which uncertainty is

rife. We should be taught to live with uncertainty and to handle it

4.-15-
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sensibly: not to say that politician is right, but that he is right with

probability 0.7.

Notice that the subjectivist paradigm involves selection amongst a given

"* list D of decisionsi and that the uncertainty is amongst the members of

. Essentially the method only compares alternatives. It does not admit

the notion of "do something else" (not in D) or the possibility that

something else is true (not in A ). At first this seems unsatisfactory but

reflection suggests that it is reasonable. Things are not good in themselves

or unusual in themselves: they are only better or worse than others, more or

less common than others. The world is comparative, not absolute. Of course#

-I you should keep your mind open to a possible extenaion of D or * , for such

creativity is tremendously important, and make D and 0 as large as

possible, but most of the time you merely need to compare the possibilities.

-16-



7. Decision Trees and MEU.

We next pass from probability determinations to discuss the implemen-

tation of the MEU process. A useful tool is the decision tree (Figure 1) with

decision and random nodes. Utilities are associated with the terminal

branches and the general procedure is to take expectations at each random node

and maximize at each decision node. These two operations are the only ones

used in the method. Figure 2 shows a more elaborate tree in which both

decisions and events are broken into two groups. The collection and handling

of information are important aspects of OR and this tree has first a deci-

sion e (for experiment) on what data to collect before a final decision

d. It also has two uncertain quantities, e, relevant to d, and x, the

data actually collected (the result of the experiment). Notice how the tree

is written in temporal order from the choice of experiment e to the realiza-

tion of 0, and how the probabilities are always conditional on what has

occurred before. The analysis of a tree always proceeds in the order opposite

to that of time - begin at the end and go on until you come to the begin-

ning. At the last random node an expectation is evaluated over 0, which is

then maximized at the last decision node giving

max I u(d,0,e,x)p(Ojd,ex) - U(ex)
d e

say. The reduced tree that remains, with e and x, is of the same struc-

ture as that in Figure 1 with d and 0. In particular U(e,x), replacing

u(d,@), is a utility: namely the utility as perceived by you of the situa-

tion where you have performed e with result x. The analysis is completed

by taking an expectation over x and then a maximization over e yielding

max I U(e,x)p(xle).
e x

-17-



The procedure used in this analysis is often called dynamic programming

based on the optimality principle. Both the method and the principle are

elementary deductions within the subjectivist paradigm and the failure to

recognize this has led to obfuscation and pretentious claims for the prin-

ciple. The procedure can obviously be generalized to any finite number of

stages; the final stage is usually called the horizon. Notice that the method

is an algorithm for the evaluation of the optimum decision in that it pre-

scribes a sequence of computations that lead to the answer. Unlike Newtonian

mechanics, MEU does not lead to a differential equation for which an algo-

rithmic solution has to be sought. With a long decision tree, it is unfor-

tunately true that the Bayesian calculations become impossibly time-consuming

even on the fastest machines and approximations have to be developed.

Notice that the method involves some principles of coherence. One has

already been mentioned: the quanitity evaluated at the second decision

node, U(e,x), is itself a utility and would be appropriate if the horizon

were reduced from 8 to x. You might find it useful to compare your value

of U , calculated from u , with your directly perceived value after x, just

as p(A) was compared with its value when B was incorporated. The other

coherence concerns the probabilities p(xle) and p(O8d,e,x): the former

does not depend on d so that the product is p(x,Oed,e), the joint distri-

bution of the two uncertain quantities x and e. This may also e written

p(x,Old,e) - p(xIS,d,e)p(6Jd,e).

This alternative presentation of the uncertainty is often convenient because

it displays the dependence of x on 0. The purpose of the experiment was to

enhance your knowledge of 0 so that the result x will depend on 0. Again

your perceptions in both approaches may provide a convenient check on coher-

ence. Statisticians favour this last method, calling p(Old,e) the Rrior

(to e) probability of 0, and p(xIO,d,e) is the likelihood (of 0)

-18-



given x. Then p(Old,e,x) is the posterior (to e) probability of 8.

There is no standard nomenclature for p(xle) which is your perception of

what would happen were you to perform e , not knowing 8. We will return to

the statistical aspects below, but first we consider the value of an

experiment.

The expected utility from performing an experiment e is

max [ u(d,G;e,x)p(O8d,e,x)p(xle) - U(e)
x d

say. one possibility is not to perform an experiment and so collect no

data. Consider this as a null experiment e0 with null data x0. The,.

u(d,8;e 0,x0) u(d,O) and p(6jd,e01x0) - p(Od), evaluations already made,

and p(x0 je0 ) - 1. Consequently

U(e 0 max u(d,8)p(Ojd)
de

as before. Hence e is only worth performing, or the data worth collecting

if U(e) > U(e0 ). The difference U(e) - U(e0 ) is the expected utility of
a

e. (The expression, expected value of sample information, EVSI, is sometimes

used.) In the special case where u(d,B,e,x) - u(d,8), so that the perform-

ance of the experiment never decreases the utility (or is cost-free), and

p(Old,e) - p(8Id), so that the decision to use e does not change your

perception of 8, the expected utility of e is non-negative. Loosely

expressed, cost-free data is always expected to be of utility. Notice the use

of the word 'expected' in that sentence: it can happen that some data values,

x, can reduce utility - but you do not expect that to happen. A conceptually

useful experiment is one that tells you the value of 8; so that x - 6.

This is called a perfect experiment, el. Under the two conditions just

mentioned, U(e ) ) U(e) > U(e 0) and U(e ) - U(e ) is the expected utility

of perfect information. It provides an upper bound for the expected utility

of all experiments.
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An immediate application of these ideas is to sampling inspection. For a

batch of uncertain quality 9, the decisions d may be to reject or to

accept it. An experiment may be to take a sample of size e (or, in the more

usual notation, n) and see how many defectives x it contains. The above

analysis deals with both the optimum choice of n (including no sampling, n

0 or e = e0 ) and the acceptance/rejection problem. A practical difficulty

lies in the evaluation of u(d,O) when d is acceptance for this involves

the disutility of a customer receiving a defective item, which is notoriously

difficult to assess. However the principle of coherence can be of help

here. Often this disutility will be sensibly constant over a range of prod-

ucts so that if one sampling scheme has been selected for product A, there is

an implicit disutility that may be used when discussing product B. The point

is that the proper invariant is the disutility, not other quantities like

acceptance probabilities. The pioneering work of Hald (1967) seems to have

made little impact on sampling inspection.

4.
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1
8. Statistical asnects: the likelihood principle.

We now return to the statistical aspects of experimentation. The basic

result is the equality of the alternative expressions for the joint uncer-

tainty of x and 6. omitting the dependence on d and e (or alterna-

tively thinking of these as fixed) you may write

p(x)p(olx) - p(xle)poe),

the left-hand side being the original form in the MEU approach. If this is

considered as a function of 6 for fixed x we may write

p(x) a p(xle)p(e).

In words, the posterior probability of 6 given x is proportional to the

product of the likelihood of 6 for x and the prior probability of 0.

This is Bayes theorem, and its ubiquity gives rise to the subject being called

Bayesian statistics. Its importance lies in the fact that it tells you how to

react sensibly (coherently) to partial information about the quantity of

interest, 0, in the form of data, x. In the sampling inspection applica-

tion, if 6 is the fraction defective in a (large) batch, p(xIO)

Sx(,-8) n -x , and p(e) describes your initial opinions about the batch

before sampling. Distinguish between p(xIO) as a function of x , for which

it is a probability, and p(xl6) as a function of 0, called a likelihood,

which is not a probability.

We now consider a result which is perhaps the most important discovery

made in statistics this century: the likelihood principle. Suppose that you

are at the second decision node of Figure 2, having observed x and about to

select d. Then the only relevant probability is p(Old,e,x) and by Bayes

theorem the only contribution x makes to this probability is through the

likelihood p(xlO,d,e) (which will not involve d). Hence after observation

of x the only relevant feature of x is the likelihood of 0. given x:

-21-
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this is the likelihood principle. For example, in the sampling inspection

case with x defects in a sample of n the likelihood is x (1-8) n- x

irrespective of whether a single sample of size n was taken, or whether two

stages, n1 and n2, with nI + n2 a n, were used, or whether the sampling

was done completely sequentially and stopped according to some rule that

depended only on the sampling experience. It is remarkable that the principle

is denied by all of conventional statistics. For example, a significance test

of 8 8 (60 may be the quality limit) is performed by calculating a tail

area like X &Y(l-8)ny in the single sample case. In general a summation
y~x

is required over other samples (here (y,n) with y > x) besides the one

obtained. The other samples will depend on whether the sampling was one-

stage, two-stage or sequential and consequently the notion of a significance

test violates the likelihood principle, and hence the Bayesian paradigm, and

is incoherent. Examples of this misuse abound. Clinical trials, which

usually have a strong sequential element, are typically analyzed using

significance tests; and the misuse of money in the improper analysis of cancer

trials alone must surely be appreciable. Notice that the likelihood principle

does not obtain prior to observing x (as indeed, it is then meaningless).

This is clearly seen in the analysis at the preceding decisions node where

M U(e,x)p(xle), a summation over x, as in a significance test, is
x

required. The controversy between sampling-theory and Bayesian statistics

really revolves around what happens after the data are to hand when the

likelihood principle is the major difference. The argument has been advanced

that statistics is concerned with inference, not decision-making, and that the

likelihood principle does not there obtain. Ramsey's view seems correct: the

purpose of inference is to enable potential decisions to be made. And for any

decision problem that involves only 8 as the uncertain element, only the
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given x matters and that, by Bayes theorem, involves only the likelihood.

We now return to the insurance example and have a more detailed look at

the probability calculations involved there. This will illustrate the value

of coherence and the relevance of the likelihood principle.

At

'-13
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9. Example.

In the earlier example the probabilities of 0, 1 and 2 accidents to

the 2 aircraft were assessed at 0.9606, 0.0388 and 0.0006 respectively. You

could have assessed these directly (and coherently since they add to one) but

it might be advantageous to introduce other probabilities as a further check

on coherence. One possibility is to suppose that each aircraft has a chance

W of total loss in a year: W being an unknown rate for this type of air-

craft. (See the earlier discussion of chance for a die.) Then the proba-

bility distribution for W could be assessed. This was done here and a

density

p(w) - 99 x 98.w(1-w)
97

was selected. This has a mean of 2/100 - 0.02 or I loss per. 50 aircraft

per. year. The probability that the rate is below 0.01 is 0.371 0.02

is 0.59: 0.04 is 0.91 and 0.06 is 0.98. The advantage of thinking in

terms of an overall rate W is that many probabilities can be deduced from

it. (Remember, w is not a probability, but a chance.) Thus, given W, the

probability of no accident is (1-w) for one aircraft and, by the independ-

2
ence of chances, for two aircraft is (1-w)2. Hence

p(0-0) - fl p(8-0Iw)p(w)dW - f(1-w)2p(w)dw
0 0

which gives 0.9606 as above. The other values follow similarly.

To further illustrate the value of considering W suppose that a year

later the policy comes up for renewal, no accidents having occurred to the two

aircraft. A year later some other data will be available. Suppose that there

has during the year been no total loss of any aircraft of the type insured and

that the total exposure including the airline's, has been the equivalent of 40

aircraft/years. In the language and notation above, there have been x=0

40
defects in n-40 cases. The likelihood for W is (I-) 0 , Multiplying by

-24-
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p(W) and using Bayes theorem

p(W10,40) (I-w) 40 W(I-W)97

or

137
p(W10,40) - 139 x 138. W(1-W)

Repetition of the calculations for the first year show that your probability

of no accidents in the second year is

f(1.W) 2p(WI 0,40)dw
0

which is 0.9717, an increase due to the favourable experience with that type

of aircraft. The probabilities for one and two accidents are 0.0280 and

0.0003. The new premium is 0.07, a reduction on the original value of 0.10.

The revised expected loss is 0.057. Now you have a description which is

coherent over both years and is extendable to future experience with the

aircraft. The reader might like to do the calculations supposing that an

aircraft crashes, providing an additional likelihood of w, and see how the

premium rises in response to the disaster.

Notice that the only aspect of the data used in the analysis was the

40
likelihood (1-W) , in accord with the likelihood principle. In particular,

it was not necessary to consider whether the exposure of the 40 aircraft/years

was fixed or was obtained randomly as would strictly be required by conven-

tional statistical analyses.
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10. Further reading.

There are two, elementary treatments of this subject, by Raiffa (1968)

and Lindley (1971a). The standard texts on the theory are Raiffa and

Schlaifer (1961) and Schlaifer (1969). A good treatment that happily blends

theory and practice is Brown et. al. (1974). No one who thinks carefully

about probability can afford not to read the brilliant, but difficult, volumes

of de Finetti (1974): here is wisdom. The best statistical treatment, again

difficult, is Jeffreys (1967). Any one who has read these two books is well-

equipped to sort out the wheat from the chaff in the many, other statistical

texts. A review is provided by Lindley (1971b).
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